Chapter 19

The Genetics of Cancer

Sections to study

19.3 How cell division is normally controlled
19.1 Characteristics of cancer cells
19.2 The genetic basis of cancers
19.4 How mutations cause cancer phenotypes
19.5 Personalized cancer treatment

19.3 How cell division is normally controlled

Cell division

MitosisCytokinesis

How do cells know when to divide?

- **Extracellular signals:** Steroids, peptides, and proteins that act over long or short distances, collectively known as hormones.
- Cell-bound signals: Such as histocompatibility proteins. Cells in the immune system communicate via these signals.

Each signal transduction pathway/system has four components

The activation or inhibition of intracellular targets after growth factor binding is called signal transduction.

- **1. Growth factors** hormones and cell-bound signals that stimulate or inhibit cell proliferation.
- **2. Receptors** membrane-bound proteins that accept signals.
- **3.** Signal transducers relay messages.
- 4. **Transcription factors** activate the expression of genes.

The small GTPase RAS is involved in growth factor signaling

Cell cycle and its regulation

DNA synthesis

The length of cell cycle varies with each organism

Experiments with yeast helped identify genes that control cell division

The budding yeast Saccharomyces cerevisiae

The fission yeast Schizosaccharomyces pombe

Properties of yeast

- Grow as haploid or diploid organisms
 - Can identify recessive mutations in haploids
 - Complementation analysis in diploids
- Budding daughter cell arises on the surface of mother cell and grows in size during cell cycle. Helps determine stage of cell cycle
- Powerful genetics

The 2001 Nobel Prize in Physiology or Medicine

Leland H. Hartwell

Isolated cell division cycle *cdc* mutants in the budding yeast

Paul M. Nurse Found *cdc2* in the fission yeast

Tim Hunt Found cyclins in sea urchin

Isolation of temperature-sensitive mutants in yeast

- Mutants grow normally at permissive temperature, but lose gene function at restrictive temperature.
- Several dozens of cell cycle mutants have been isolated.

Leland H. Hartwell

A cell-cycle mutant of yeast

- (a) Growth at permissive temperature displays buds of all sizes.
- (b) Growth at restrictive temperature shows cells arrested with a large bud.

Wild-type and *cdc* mutant cells several hours after incubation at the restrictive temperature

Wild-type

cdc24

A pathway of gene-controlled events in S. cerevisiae cell cycle

BE=bud emergence, NM=nuclear migration, CK=cytokinesis, CS=cell separation, iDS=initiation of DNA synthesis DS=DNA synthesis, mND=medial nuclear division, IND=late nuclear division, MF=mating factor,

Some important cell-cycle and DNA repair genes

TABLE 19.1	Some Important Cell-Cycle and DNA Repair Genes Gene Products and Their Function	
Genes		
CDKs	Enzymes known as cyclin-dependent protein kinases that control the activity of other proteins by phosphorylating them	
CDC28	A CDK discovered in the yeast Saccharomyces cerevisiae that controls several steps in the S. cerevisiae cell cycle	
CDC2	A CDK discovered in the yeast Schizosaccharomyces pombe that controls several steps in the S. pombe cell cycle; also the designation for a particular CDK in mammalian cells	
CDK4	A CDK of mammalian cells important for the G1-to-S transition	
CDK2	A CDK of mammalian cells important for the G1-to-S transition	
cyclins	Proteins that are necessary for and influence the activity of CDKs	
cyclinD	A cyclin of mammalian cells important for the G1-to-S transition	
cyclinE	A cyclin of mammalian cells important for the G1-to-S transition	
cyclinA	A cyclin of mammalian cells important for S phase	
cyclinB	A cyclin of mammalian cells important for the G ₂ -to-M transition	
E2F	A transcription factor of mammalian cells important for the G ₁ -to-S transition	
RB	A mammalian protein that inhibits E2F	
p21	A protein of mammalian cells that inhibits CDK activity	
p16	A protein of mammalian cells that inhibits CDK activity	
p53	A transcription factor of mammalian cells that activates transcription of DNA repair genes as well as transcrip- tion of p21	
RAD9	A protein that inhibits the G ₂ -to-M transition of S. cerevisiae in response to DNA damage	
E6	A protein of the HPV virus that inhibits p53	
E7	A protein of the HPV virus that inhibits Rb	

Cyclin-dependent kinases (CDK) control the cell cycle by phosphorylating substrate proteins

Nuclear lamins

- Underlie inner surface of the nuclear membrane
- Probably provide structural support for nucleus
- May also be site for assembly of DNA replication, transcription, RNA transport, and chromosome structure proteins
- Dissolution of nuclear membrane during mitosis is triggered by CDK phosphorylation of nuclear lamins.

Human CDKs and cyclins can function in yeast in place of native proteins

G1-to-S transition in human cells

Individuals who inherit one copy of the *RB*⁻ allele are prone to cancer of the retina (retinoblastoma)

The E7 protein of human papillomavirus (HPV, 人乳头瘤病毒) inhibits Rb, leading to cell proliferation.

Disease	HPV type
Common warts	2, 7, 22
Plantar warts	1, 2, 4, 63
Flat warts	3, 10, 8
Anogenital warts	6, 11, 42, 44 and others ^[13]
Anal dysplasia (lesions)	6, 16, 18, 31, 53, 58 ^[14]
Genital c <mark>ancers</mark>	 Highest risk:^[13] 16, 18, 31, 45 Other high-risk:^{[13][15]} 33, 35, 39, 51, 52, 56, 58, 59 Probably high-risk:^[15] 26, 53, 66, 68, 73, 82
Epidermodysplasia verruciformis	more than 15 types
Focal epithelial hyperplasia (oral)	13, 32
Oral papillomas	6, 7, 11, 16, 32
Oropharyngeal cancer	16
Verrucous cyst	60
Laryngeal papillomatosis	6, 11

Genetic studies on G2-to-M transition in the fission yeast *S. pombe*

19-24

Humans make the transition from G2 to M similar to yeast

Cell-cycle checkpoints ensure genomic stability

G1-to-S checkpoint

(a)

- p53 pathway activated by ionizing radiation or UV light (causing DNA damage) delays entry into S phase.
- **p53 transcription factor**, induces expression of DNA repair genes and p21 (CDK inhibitor).
- DNA is repaired before cell cycle continues.
- If DNA is badly damaged, cells commit suicide.
- by UV or ionizing radiation p53 Induces expression of CDK inhibitor, p21 p21 inhibits activity of CDK4-cvclinD Induces expression complexes. of DNA repair genes **Rb** remains unphosphorylated and E2F is inhibited. preventing entry into S phase of cell cycle

Transcription factor, p53 activated

p53 mutants do not induce p21 and cell cycle is not arrested.

Cells replicate damaged DNA.

Cells die.

Two checkpoints act at the G₂-to-M transition DNA damage during G2

Checkpoint in M Spindle formation and chromosome attachment

Checkpoints ensure genomic stability

Three types of genomic instability:

- Chromosome aberrations: such as deletion, duplication, and translocation.
 - Single-stranded nicks normally repaired in G1 phase.

Aneuploidy

- Chromosome loss or gain by spindle error- normally corrected in G2-to-M checkpoint.
- Changes in ploidy
 - Caused by defective centrosomes or spindles.

Three classes of error lead to genomic instability in tumor cells

19.1 Characteristics of cancer cells

Cancer results when some cells in an individual organism's body divide out of control and eventually acquire the ability to spread beyond their prescribed boundaries.

Moles and skin cancer

Relative percentages of new cancers in the US

Each cancer may represent a unique property

Cancer can develop in different tissues and organs.

- Different cell types vary in their phenotypic responses to the same cancer-causing mutations.
- Cancers affecting the same tissue may have different origins and effects. Cancers in different patients often have unique properties.
 - Mutations in a variety of different genes that regulate cell division can help produce cancer.

Each cancer cell displays a number of phenotypes

- 1. Uncontrolled cell growth.
- 2. Genomic and karyotypic instability.
- **3.** The potential for immortality.
- 4. The ability to get more nutrients and invade distant tissues.
1. Changes that produce uncontrolled cell growth

- Autocrine stimulation tumor cells make their own signals to divide.
- Loss of contact inhibition lost property to stop dividing when contacted by another cell.
- Loss of gap junctions no channels for connecting to neighbor cell.
- Loss of cell death resistance to programmed cell death.

Programmed cell death (apoptosis and necrosis)

19-38

The 2002 Nobel Prize in Physiology or Medicine

Sydney Brenner Cambridge U H. Robert Horvitz MIT

John Sulston Cambridge U

For their discovery of genetic programs that control cell death in *C. elegans*.

Screening for cell death mutants in C. elegans

The nematode C. elegans

Xiaodong Wang NIBS

2. Changes that produce genomic and karyotypic instability

- Mutation rate is much higher in cancer cells.
 - Defective in mismatch repair during DNA replication.
 - Defective in DNA damage repair caused by radiation or UV.
- Gross chromosomal rearrangements.
- Aneuploidies and polyploidies.
 Defective mitotic apparatus.

Tumor-cell karyotypes often show increased chromosomal rearrangements

Normal cells

Cancer cells

Three classes of error lead to genomic instability in tumor cells

3. Changes that produce a potential for immortality

- Loss of limitations on the number of cell divisions.
- Ability to grow in culture normal cells do not grow well in culture.
- Restoration of telomerase activity.

4. Changes that enable tumor to get more nutrients and invade distant tissues

Some tumors get more nutrients by secreting substances that cause blood vessels to grow toward them.

- Angiogenesis A physiological process that new blood vessels form from pre-existing vessels.
- Ability to metastasize.
- Evasion of immune surveillance.

19.2 The genetic basis of cancers

Cancer presumably arises by successive mutations in a clone of proliferating cells.

It takes several mutations in different genes to produce a cancer

p53 is not essential for normal cell function, but it plays a role in preventing tumor formation.

Cancers are clonal descendents of one cell

Glucose-6-phosphate dehydrogenase (G6PD)

Beutler E *et al.* (1962) The normal human female is a mosaic of X-chromosome activity: studies using the gene for G6PD-deficiency as a marker. *P.N.A.S.*

Environmental mutagens increase the likelihood of cancer

- If one sib or twin gets cancer, the other usually does not.
- Populations that migrate profile of cancer becomes more like people indigenous to new location.
- Numerous environmental agents increase cancer development.

TABLE 19.2	The Incidence of Some Common Cancers Varies Between Countries			
Site of Origin of Cancer	High-Incidence Population		Low-Incidence Population	
	Location	Incidence*	Location	Incidence*
Lung	USA (New Orleans, blacks)	110	India (Chennai)	5.8
Breast	Hawaii (Hawaiians)	94	Israel (non-Jews)	14.0
Prostate	USA (Atlanta, blacks)	91	China (Tianjin)	1.3
Cervix	Brazil (Recife)	83	Israel (non-Jews)	3.0
Stomach	Japan (Nagasaki)	82	Kuwait (Kuwaitis)	3.7
Liver	China (Shanghai)	34	Canada (Nova Scotia)	0.7
Colon	USA (Connecticut, whites)	34	India (Chennai)	1.8
Melanoma	Australia (Queensland)	31	Japan (Osaka)	0.2
Nasopharynx	Hong Kong	30	UK (southwestern)	0.3
Esophagus	France (Calvados)	30	Romania (urban Cluj)	1.1
Bladder	Switzerland (Basel)	28	India (Nagpur)	1.7
Ovary	New Zealand (Polynesian Islanders)	26	Kuwait (Kuwaitis)	3.3
Pancreas	USA (Los Angeles, Koreans)	16	India (Pune)	1.5
Lip	Canada (Newfoundland)	15	Japan (Osaka)	0.1

*Incidence indicates number of new cases per year per 100,000 population, adjusted for a standardized population age distribution (so as to eliminate effects due merely to differences of population age distribution). Figures for cancers of breast, cervix, and ovary are for women; other figures are for men. Adapted from V. T. DeVita, S. Hellman, and S. A. Rosenberg (eds.), *Cancer: Principles and Practice of Oncology*, 4th ed. Philadelphia: Lippincott, 1993; based on data from C. Muir et al., *Cancer Incidence in Five Continents*, Vol. 5. Lyon: International Agency for Research on

Cancer develops over time

Fig. 19.8, 19.9

-Basal cells proliferate (1 year after smoking starts)

Cilia and columnar cells destroyed.
 Squamous or "flattened" cells
 (5 years after smoking starts)

Cancer cells with atypical nuclei (8 years after smoking starts)

Cancer cells with atypical nuclei
 Basement membrane

Early cancerous invasion (20–22 years after smoking starts; first symptoms)

Some cancers run in families

Individuals who inherit one copy of the *RB*⁻ allele are prone to cancer of the retina

Cancer vs genetic diseases

Cancer is caused by mutations in genes that normally regulate cell growth and division.

- Cancer differs in two ways from genetic diseases caused by the inheritance of one or two copies of a single defective gene.
 - 1. Most mutations that lead to cancer occur in the somatic cells of one tissue.
 - 2. Multiple mutations in an array of genes must accumulate over time in a clonal descendents of a single cell before the cancer phenotype appears.

19.4 How mutations cause cancer phenotypes

- Oncogene: Mutant allele of a normal gene that acts dominantly in cancer formation.
 - Protooncogene: The normal gene that becomes oncogene upon mutation.
- Mutant tumor-suppressor gene: Mutant allele of a normal gene that acts recessively in cancer formation.
 - Tumor-suppressor gene: The normal gene of mutant tumorsuppressor gene.

Cancer Location/Type	Mechanism
Blood, breast, lung, brain, stomach	Alters transcription factor
Brain	Alters growth factors or growth factor receptors
Thyroid	Alters growth factors or growth factor receptors
Brain, breast	Alters growth factors or growth factor receptors
Breast, ovary, salivary glands	Alters growth factors or growth factor receptors
Blood, lung, colon, ovary, pancreas	Affects signal transduction
Blood	Releases brake on apoptosis
Breast, head, and neck	Disrupts cell cycle protein (cyclin)
White blood cells	Translocation alters proto- oncogene and stimulates cell division
	Cancer Location/Type Blood, breast, lung, brain, stomach Brain Thyroid Brain, breast Breast, ovary, salivary glands Blood, lung, colon, ovary, pancreas Blood Breast, head, and neck White blood cells

Tumor Suppressors

MTS1	Many sites	Releases brake on cell cycle
RB	Eye, bone, breast, lung, bladder	Releases brake on cell cycle
WT1	Kidney	Releases brake on cell cycle
p53	Many sites	Disrupts p53 protein, which normally determines whether DNA is repaired or cell dies
DPC4	Pancreas	Affects signal transduction
NF1	Peripheral nerves	Disrupts inhibition of normal ras, which stimulates cell division
APC	Colon, stomach	Makes nearby DNA more susceptible to replication errors
BRCA1, BRCA2	Breast, ovary, prostate	Faulty repair of double-stranded DNA breaks
hMSH2, hMLH1, hPMS1, hPMS2	Colon, uterus, ovary	Disrupts DNA mismatch repair
Lkb1	Peutz-Jeghers syndrome (many sites)	After birth, fails to block expression of vascular endothelial growth factor, normally active in embryo

Two methods to isolate oncogenes

1. Analysis of tumor-causing retroviruses

The 1989 Nobel Prize in Physiology or Medicine

Harold E. Varmus UCSF

J. Michael Bishop UCSF

For their discovery of the cellular origin of retroviral oncogenes.

TABLE 19.3 Retroviruses and Their Associated Oncogenes*

Virus	Species	Tumor	Oncogene
Rous sarcoma	Chicken	Sarcoma	src
Harvey murine sarcoma	Rat	Sarcoma and erthyroleukemia	H-ras
Kristen murine sarcoma	Rat	Sarcoma and erthyroleukemia	K-ras
Moloney murine sarcoma	Mouse	Sarcoma	mos
FBJ murine osteosarcoma	Mouse	Chondrosarcoma	fos
Simian sarcoma	Monkey	Sarcoma	sis
Feline sarcoma	Cat	Sarcoma	sis
Avian sarcoma	Chicken	Fibrosarcoma	jun
Avian myelocytomatosis	Chicken	Carcinoma, sarcoma, and myleocytoma	myc
Ableson leukemia	Mouse	B cell lymphoma	abl

*Retroviruses identified as causative agents of tumors in animals contain oncogenes that were derived from a cellular gene. Adapted from Lewin, Genetics, 1e, Oxford University Press, Inc. by permission.

- 2. Exposure of noncancerous cells to tumor DNA in culture.
 - Use human tumor DNA to transform normal mouse cells.
 - Isolate human DNA from transformants.

Tumor-suppressor gene mutations release a brake on cell division and decrease accuracy of cell reproduction

TABLE 19.5	ABLE 19.5 Mutant Alleles of These Tumor-Suppressor Genes Decrease the Accuracy of Cell Reproduction*				
Gene	Normal Function of Gene (if known), or Disease Syndrome Resulting from Mutation	Function of Normal Protein Product			
p53	Controls G1-to-S checkpoint	Transcription factor			
RB	Controls G1-to-S transition	Inhibits a transcription factor			
ATM	Controls G1-to-S phase, and G2-to-M checkpoint	DNA-dependent protein kinase			
BS	Recombinational repair of DNA damage	DNA/RNA ligase			
XP	Excision of DNA damage	Several enzymes			
hMSH2, hmLH1	Correction of base-pair matches	Several enzymes			
FA	Fanconi anemia	Unknown			
BRCA1	Repair of DNA breaks	Unknown			
BRCA2	Repair of DNA breaks	Unknown			

*Many tumor-suppressor genes have been associated with a specific function in the cell cycle necessary for accuracy of cell division.

Several cancers caused by mutant tumor-suppressor genes are inherited in a dominant fashion

■ ~75% of RB^+/RB^- individuals develop retinoblastoma.

~ 66% of BRCA+/BRCA⁻ women develop breast cancer at the age of 55.

Fig. 19.23, 19.24

Summary on cancer development

- Several mutations in different genes are required for cancer formation.
 - Mutations in DNA synthesis and DNA damage repair.
 - Mutations that prevent apoptosis.
 - Mutations that help to stimulate blood vessel formation.
- **Dominant mutations in protooncogenes may overactivate expression of proteins that promote cell proliferation.**
- Recessive mutations in tumor-suppressor genes may release the brakes that keep cells from proliferating.

19.5 Personalized cancer treatment

- Cancers affecting the same tissue may have different origins and effects. Cancers in different patients often have unique properties.
 - Mutations in a variety of different genes that regulate cell division can help produce cancer.
- Early diagnosis is the key.

Surgery to remove cancer and chemotherapy to kill cancer cells.

Detection of cancer-causing *BRCA1* mutations with DNA microarrays or DNA sequencing

- 5500 bp *BRCA1* coding region requires 22000 ASOs.
- Each column contains an ASO differing only at the nucleotide position under analysis.

Prices for diagnosis of cancer-causing BRCA1 and BRCA2 mutations are high.

Protected by patents from Myriad Genetics.

Proactive treatment against cancer

1. Surgery to remove cancer and chemotherapy to kill cancer cells.

- Angelina Jolie underwent breast tissue-removing surgery to prevent breast cancer in 2013.
 - Her mother died of cancer at 56.
 - She carried cancer-causing mutations i BRCA1.

Gleevec treats chronic myelogenous leukemia. (格列卫,瑞士诺华Novartis制药公司)

2. Vaccination against cancer caused by viral infection

Human papillomavirus (HPV, 人乳头瘤病毒)

Disease	HPV type
Common warts	2, 7, 22
Plantar warts	1, 2, 4, 63
Flat warts	3, 10, 8
Anogenital warts	6, 11, 42, 44 and others ^[13]
Anal dysplasia (lesions)	6, 16, 18, 31, 53, 58 ^[14]
Genital c <mark>ance</mark> rs	 Highest risk:^[13] 16, 18, 31, 45 Other high-risk:^{[13][15]} 33, 35, 39, 51, 52, 56, 58, 59 Probably high-risk:^[15] 26, 53, 66, 68, 73, 82
Epidermodysplasia verruciformis	more than 15 types
Focal epithelial hyperplasia (oral)	13, 32
Oral papillomas	6, 7, 11, 16, 32
Oropharyngeal cancer	16
Verrucous cyst	60
Laryngeal papillomatosis	6, 11

 Gardasil, a subunit vaccine against human papillomavirus (HPV) that cause ~70% of cervical cancers. Developed by Merck and was approved by FDA in 2005.

3. Oncolytic virotherapy (病毒溶瘤疗法)

Oncolytic viruses (溶瘤病毒): Viruses that can kill cancer.

- Natural viruses that can infect and kill tumor cells.
 - Rabies virus (狂犬病毒), parvovirus (细小病毒).

Engineered viruses that can specifically kill tumor cells.

- 1991, Herpes simplex virus-1 (HSV-1, I型单纯疱疹 病毒) killed human glioma.
- Adenovirus (腺病毒)
- Newcastle disease virus (NDV, 新城疫病毒), reovirus (呼肠孤病毒), influenza A virus (甲型流 感病毒) and measles virus (麻疹病毒).

Martuza RL *et al.* (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. *Science* 252: 854–856