Chapter 11

The Eukaryotic Chromosome
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Sections to study

11.1 Chromosomal DNA and proteins

11.2 Chromosome structure and compaction

11.3 Chromosomal packaging and gene expression
11.4 Replication of eukaryotic chromosomes

11.5 Chromosome segregation

11.6 Artificial chromosomes
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Chromosome — The self-replicating genetic structures of cells
containing the DNA that carries in its nucleotide sequence the
linear array of genes.

Human chromosomes

Human male karyotype
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Chromatin (3¢ & /i) — The generic term for any complex of DNA
and protein found in a cell’s nucleus.
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11.1 Chromosomal DNA and proteins

m The chromatin is roughly 1/3 DNA, 1/3 histones, and 1/3
nonhistone proteins by weight.

= Each chromosome packages a single long molecule of DNA.

= Studies examine stretching and recoiling of chromosomes. L.onger
pieces recoil more slowly than shorter pieces.

m Pulse field gel electrophoresis (PFGE)

m Separates large pieces of DNA — number and sizes correspond to
number and sizes expected if each chromosome contains a single
piece of DNA
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Pulse field gel electrophoresis (PFGE)
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Protein components of chromosomes

= Histone proteins abound the chromatin of all eukaryotic cells.

= Histones — small proteins with basic, positively charged amino acids
lysine and arginine.

= Bind to and neutralize negatively charged DNA.
= Make up half of all chromatin protein by weight.
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Yeast histone H3 (Hhtl)
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= Histone proteins
m Five types: H1, H2A, H2B, H3, and H4.

= Core histones make up nucleosome:
H2A, H2B, H3, and H4.

= DNA and histone synthesis regulation
correlate timing so both are synthesized
together.
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= Evolutionarily conserved.

Core of 8 Histones

13-9



m Post-translational modification of histones

m Acetylation
m Methylation
m Phosphorylation

Modlflcatlon sites
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Possible modification of amino acids at the N-
terminus of yeast histone H3
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= Nonhistone proteins are a heterogeneous group.

= Half of proteins in chromatin are nonhistones.

= Large number of nonhistone proteins, 200 — 2,000,000 molecules per
diploid genome.

= Large variety of functions
m Scaffold — backbone of chromosome
m DNA replications — e.g., DNA polymerases
m Chromosome segregation — e.g., motor proteins of kinetochores

m Transcriptional regulation — largest group regulates
transcription during gene expression (5,000 — 10,000 proteins in
mammals)

® Occur in different amounts in different tissues because of
variety of function.
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Nonhistone proteins have diverse functions
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CENP-E staining
Human

chromosome treated with detergent
Fig. 11.1, 11.2
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11.2 Chromosome structure and compaction

® The nucleosome is the
fundamental unit of
chromosomal
packaging.

m Chromatin fibers with
beads having
diameter of about 100
A and strings having
diameter of 20 A.

Electron microscopic pictures of nucleosomes
(chicken cells)
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m X-ray diffraction
analysis

= DNA does not coil
smoothly.

= Base sequences dictate
preferred nucleosome
positions along DNA.

Linker DMNA |
Linker DMNA

X ray crystallography of nucleosome structure

Fig. 11.4 13-14



Linker DINA

Linker DNA

m Bead is a nucleosome with about 160 bp of DNA wrapped twice around
a core of 8 histones.

m 40 bp of DNA link together nucleosomes.
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The DNA laddering = DNA was fragmented into ~180 bp

assay of apoptosis: during apoptosis by the caspase-
activated DNase (CAD).

Apoptosis
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"heads on a string form
of chromatin"
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= Spacing and structure of nucleosomes affects gene expression.

= DNA in the regions between nucleosomes is available for interactions
with proteins involved in expression, regulation, and further
compaction.

= The way in which DNA is wound around a nucleosome plays a role in
determining how certain proteins interact with specific DNA sequences.

m Packaging into nucleosomes condenses DNA 7-fold.

= 2 meters of DNA shortens to less than 0.25 meters.
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Models of higher level compaction seek to explain extreme
compaction of chromosomes

= Formation of 300 A fiber through supercoiling

in diameter

300 A fiber
(superhelix)

Fig. 11.5 13-18



m Radial loop-scatfold model for higher levels of compaction

= Each loop contains
60-100 kb of DNA
tethered by
nonhistone scatfold
proteins.

Fig. 11.5
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Interphase
Metaphase chromosome chromatin

.
Rosettes
compressed
into a
compact bundle

i
Additional nonhistone |
scaffold components —/
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Experimental support for radial loop-scatfold model

= Electron micrograph shows long
DNA loops emanating from the
protein scaffold.

Fig. 11.1 and 11.6 13-21



1A kAl Different Levels of Chromosome Compaction

Mechanism What It Accomplishes

Nucleosome Confirmed by crystal structure Condenses naked DNA 7-fold to a 100 A fiber

Supercoiling Hypothetical model (although the 300 A fiber Causes additional g-fold compaction, achieving a

predicted by the model has been seen in the 40- to 50-fold condensation relative to naked DNA
electron microscope)

Radial Loops—Scaffold Hypothetical model (preliminary experimental Through progressive compaction of 300 A fiber,
support exists for this model) condenses DNA to rodlike mitotic chromosome that
i5 10,000 times more compact than naked DNA
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A closer look at karyotypes: fully compacted metaphase
chromosomes have unique, reproducible banding patterns

m “G bands”

= Banding
patterns are
highly
reproducible.
= Not known

what they
represent.
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m ~ 300 dark and light G bands in low resolution human
karyotype.

m ~ 1000 G bands in high-resolution human karyotype.
m Banding patterns help locate genes.

} }Lc}catmn of genes for

colorblindness (g27-qter)

X chromosome

Fig. 11.8 13-24



Chimpanzee

Gorilla Human
Orangutan chromosome 2

m Banding patterns can
be used to analyze
chromosomal
differences between
species.

m Can also be used to
reveal cause of genetic
disease.
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m e.g., Down syndrome — 3
copies of chromosome
21.

= Deletion of a region on
X chromosome.
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Chromosome 1 Acrocentric chromosomes

Chimpanzee Gorilla Orangutan in great apes; their subsequent

fusion could have generated
chromosome 2 in humans.
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Fluorescent In situ hybridization (FISH) helps geneticists
characterize genomes

Fluorescent probes
!
% Fluorescent dye
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1. Drop cells onto a glass slide. 2. Genlly denature DNA by treating 3. Add hybrndization probes labeled with

briefly with DNase. fluorescent dye and wash away
unhybridized probe.

Fluorescence .

MmMicroscope |

Barrier filter 2 (further
blockage of stray UV rays)
v
source
Mirror to UV light; transparent to
visible light

Barrier filter 1 (blocks Objective lens
dangerous short UV rays, : Object

allows needed long UV

rays to pass through)

4. Expose to ultraviolet (UV) light.
Take picture of fluorescent chromosomes.




11.3 Chromosomal packaging and gene expression

u CompaCtion Of DNA intO (a) Promoters are hidden when wrapped in nucleosomes.
chromatin hinders DNA Nudeosome b
replication, DNA damage Histone core—, ? 5 )[ |
repair, and gene transcription. B A \e’

| How can these functions be (b) Chromatin remodeling complexes can expose gene

o promoters.
carried out? )
2 ,J <
m  Chromatin structure is dynamic v @J Q Y . Fromoter Gl Y
and can change to allow the St H “Gene
. . Nucleosome
access of specific proteins. DNase hypersensitive sites

] AV e G () ISR M B I TR L) Y 1 X0 (c) Nucleosomes in heterochromatin are tightly packed.
making up the basic chromatin ID (P [PD Silenced
e T T - N l.\::-\ Sl e, 2 \\ .
structure. =) )]  heterochromatin
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Heterochromatin versus euchromatin

m Heterochromatin is
darkly stained.

m Euchromatin is
lightly stained.

m C-banding
techniques stains
constitutive
heterochromatin
near centromere in OEEEEREE
humans.

Peripheral heterochromatin

Fig. 11.11




Most genes in heterochromatin regions are silenced

= Euchromatin
= Lightly stained regions of chromosomes
= Is transcriptionally active, contains most genes.

m Heterochromatin

= Darkly stained region of chromosome, usually found in regions near
centromere.

= Highly compacted even during interphase

m Constitutive heterochromatin: remains condensed most of time in all
cells, e.g. Y chromosome in fruitfly.
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Heterochromatin formation correlates with the
loss of gene activity

m Position-effect variegation in Drosophila

B X chromosome inactivation in female mammals
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Heterochromatin can spread along a chromosome and
silence nearby euchromatic genes

m Position-effect variegation
(PEV).

= Moving a gene near
heterochromatin silences its
activity in some cells but not
in others.

m First identified by Hermann ~ |
Muller (1946 Nobel laureate) Hermann Muller

in 1938. (1890-1967)
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Wild-type X chromosome
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Fig. 11.12
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Appearance active w” = red Interpretation
inactive w™ = white
A model for active rst* = smooth
inactive rst* = rough

pOSitiOﬂ-EffeCt Red smooth sectors Rearrangement brings

o o w*and rst* close to

Val‘legatlon e heterochromatin near
centromere.

Heterochromatin does not

m Heterochromatin _ invade either gene.
can spread to
nearby genes and -
. - w™ gene inactivated by
causes their spread of heterochromatin.
inactivation v rst* gene is active.

Heterochromatin
can spread different T

. . TN S Both w* and rst * genes
distances in = G ofV inactivated by spread of
different cells, but it ' . rst w heterochromatin.
usually does not |

skip genes.

Red rough sectors

N .
2 Never observed This is never observed.
| Therefore, heterochromatin
AN 4, %
spreads linearly without

Fig. 11.12 g 5 skipping genes.




Facultative heterochromatin (Fz453+% & /7):

Regions of chromosomes (or even whole chromosomes) that are
heterochromatic in some cells and euchromatic in other cells of
the same organism.
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Heterochromatin and euchromatin have different
histone modifications

Modlflcatlon sites

m Histone tails can be modified: w*/ /
acetylation at specific lysines and

methylation on specific lysines and
arginines.

~ Histone talil

Nucleosome

Euchromatin

Heterochromatm

Barrier insulator

Fig. 11.13, 11.14 13-35



Heterochromatin formation inactivates an X chromosome
in cells of female mammals

m In a female mammal, one X chromosome in the interphase cells

appears as a darkly stained heterochromatin mass, called Barr
bodies.

m Barr bodies were discovered by Murray Barr, a medical
researcher in 1948.

Barr body

Murray Barr (1908-1995)

13-36



m In 1961, Mary F. Lyon proposed
that in female mammals all X
chromosomes but one were
inactivated.

Mary F. Lyon
(1925- )
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The Lyon hypothesis:

1.

Each cell has only one active X chromosome. All the other ones are
inactivated.

2. The inactivation occurs in early embryonic development.

3. In a particular cell, which X chromosome will be inactivated is

randomly determined.

Barr body
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Glucose-6-phosphate
dehydrogenase (G6PD)

Beutler E et al. (1962) The
normal human female is a
mosaic of X-chromosome

activity: studies using the

gene for G6PD-deficiency
as a marker. P.N.A.S.

Tissue
sample

Sample of tissue

Electrophoresis to separate
allelic forms of enzyme

l l

Clone 1 of Clone 2 of Tumor
normal cells normal cells sample
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A female is a mosaic for expression of genes on the X
chromosome

Fertilized ovum i ﬁ} Maternal X

3 Paternal X

Early cell division
Barr body

X chromosome
inactivation

Mitosis

Skin lacking
normal sweat
glands

Normal skin




X chromosome inactivation exposed the effect
of harmful disease-causing mutations

m “Mottled” feature of more than 16 human X-linked disorders
in female heterozygotes involving the eye (retinitis pigmentosa)
and skin (anhidrotic ectodermal dysplasia).

m Female carriers of Duchenne muscular dystrophy (DMD) are
usually asymptomatic. However, 2.5-7.8% of them may
present muscle symptoms and cardiomyopathy, attributed to
a reduced production of dystrophin.
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(a)
Mechanism of X chromosome Active X Inactive X

inaCtivatiOn ol

= A 450 kb region called X
inactivation center (XIC) in
human X chromosome. LA RN . T AR ) WA

+ Histone modifying proteins

O XiSt, a~17 kb noncoding RNA, ~ Xist nGRNA
was transcribed stably only
from the inactive X
chromosome.

= Xist ncRNA binds to many
sites on the inactive
chromosome and then attracts

histone modifying enzymes
that silence the DNA.

(b)

Xist DNA loci

The nucleus of a XX
Fig. 11.15 female mouse cell




11.4 Replication of eukaryotic chromosomes

= Origins of replication
m Telomeres

m Centromeres

‘/Telomere

Centromere

— Origins of

/ replication

«— Telomere
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1. Origin of replication

Origin of replication determines where DNA replication starts.

Replication bubble
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Electron micrograph of replicating DNA from a
Drosophila embryo

Flg 11 1 6 13-46



There are many origins of replication in eukaryotes

Origins of replication
" ; NA
; / y 0 )

10,000 origins of replication in mammals, separated by 30 — 300
kb .

Each bidirectional replication is called a replicon.

DNA polymerase can assemble new DNA at a rate of about 50
nucleotides per second.

Replication occurs in about 8 hours during S phase in actively
dividing human cells.
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Yeast origin of replication

= Autonomously replicating sequences (ARSSs) in yeast consist
of an A — T rich region.

= ARSs permit replication of plasmids in yeast cells.

Consensus region

S e ARAT T TCGTCARARAT G TAAGAAATAGGTTATTACTTTTATTTAAGTATTGTT TG TECCTTTIGAAAACCAALCATAAALGATCTAAACATAAMATC TGTAAMATAA s 3
I e GTTTAARGCAGTTTT TACGATTCT TTATCCAATAATGAAAATAAAT TCATARCAAAC ACGEAAMACTTTTCEGT TCGTATTTTCTAGATTTGTATTT TAGACATTTTAT TG 5"

Yeast ARSI sequence
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m The “new” nucleosomes are
a mixture of old (recycled)
and newly formed histones,

distributed randomly on the
two daughter DNA

ozl P W W /

= Synthesis and transport of [ '
histones must be tightly Old ‘parental’ histones

coordinated with DNA
synthesis.

New H2A-H2B

= Histone modifications in
parental DNA become lost
during DNA replication.

New H3-H4

Flg 11 1 7 13-49



2. Telomeres

Telomeres: Specialized terminal structures on eukaryotic
chromosomes that ensure the maintenance and accurate
replication of the two ends of each linear chromosome.

m Telomeres are protective
caps on eukaryotic
chromosomes.

m Prevent fusion with other ’;
chromosomes :

m 250-1500 TTAGGG
repeats in yeast and
humans.

Fig. 11.18 1950



Problem of end

shortening for linear
DNA

m DNA polymerase
cannot reconstruct

5’ end of a DNA
strand.

Fig. 11.19
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Binding of telomerase to TTAGGG and
addition of RNA extends the ends

Binding of telomerase Telomerase
Telomerase

m A reverse
transcriptase that

contains protein and
RNA.

@ RNA contains

3’ AAUCCCYS’
repeats.

New bases added

to chromosome —l—|—|
| 05 x el v |

Fig. 11.20



Figure 11.21 The shelterin complex protects telomeres. The
proteins of the shelterin complex (colored shapes) bind to telomeres, fold-

ing the DNA ends (gray) so they can neither be attacked by nucleases nor

subjected to nonhomologous end-joining.

Fig. 11.21 13-53



Yeast genetics helped the discovery of telomerase genes

m [LC1l: RNA subunit

= Identified by high-copy suppression of
telomere position effect (TPE) (Singer
MS and Gottschling DE 1994, Science).

Daniel Gottschling
(Univ of Washington)
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m EST1, EST2 (reverse
transcriptase), EST3, and
CDC13 (ESTA4).

= Identified by screening for
mutants that showed a senescence
phenotype and progressive
shortening of telomeres (Lendvay
TS et al. 1996 Genetics).

Vicki Lundblad
(Salk Institute)
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Telomerase

Budding yeast

Mammals

Shelterin
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Telomeres, aging, and cancer

m Yeast cells deleted the gene for telomerase undergo telomere

shortening at the rate of about 3 bp per generation and died
later.

= Telomerase may play a role in aging.

= Most human somatic cells have very low levels of telomerase, and die
after 30-50 rounds of cell division.

m Germ-line cells and stems cells express relatively higher level of
telomerase and can divide many more generations.

= In 90% of cancers, abnormal overproduction of telomerase permits
unlimited cell proliferation.
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The 2009 Nobel Prize in Medicine or Physiology

Elizabeth Blackburn Carol Greider Jack Szostak
UCSF Johns Hopkins U Harvard U
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Telomerase-independent mechanisms to achieve telomere
elongation

® Some organisms do not naturally contain telomerase.
= Some Dipteran insects including the fruitfly Drosophila melanogaster.
® Some organisms can live when telomerase is inactivated.

= Survivors of some budding yeast S. cerevisiae mutants deleted the
gene for telomerase.

= Some immortalized mammalian cell lines and tumors.
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Alternative telomere elongation mechanisms

= Transposable element-based telomere elongation

= Transposition of telomere-specific retrotransposons HeT-A and
TART in the fruitfly D. melanogaster.

m Telomere-telomere recombination

= RAD52-dependent break-induced recombination between
chromosomal ends in the yeast S. cerevisiae.

m Circularization of linear chromosomes

= In the yeast S. pombe.
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11.5 Chromosome segregation

Segregation of condensed chromosomes depends on centromeres.

Centromere -______.:::::'_':__-——————— —'—l/
region—__—h~ — Kinetochore

microtubules

*~ Kinetochore

Cellular Cellular
*— pole pole —

(a)

Fig. 11.22 13-62



m Centromeres appear as constrictions on chromosomes.

= Contain blocks of repetitive, simple noncoding sequences called satellite
DNA:s.

= Satellite DNAs consist of short sequences S - 300 bases in length and
have different higher-order packaging than other regions.

= Histone H3 is replaced by a histone variant called CENP-A in
eukaryotes.
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Yeast centromeres

Yeast centromere: ~120 bp
Human centromere: ~1,000,000 bp

Single microtubule

Conserved Conserved
element | A—T-rich element element l|
S'ees ATAAGICACATGAT _ ~880p, (93% AT} IGATTICCGAA  eee3

'eee TATTCAGIGTACTA ACTAAAGGCTT _eee5'

T S

Yeast centromere sequence —
site of single microtubule attachment
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Centromeres have two functions:

= Hold sister chromatids together.

m Facilitate chromosome
segregation.

= Kinetochore — a specialized
structure composed of DNA and
protein that is the site at which
chromosomes attach to the spindle

microtubules.

Centromere
region—_
microtubules

“— Kinetochore

Centromeric constriction

Cellular Cellular
=— pole pole —

(a)
Fig. 11.22,11.24 13-65




11.6 Artificial chromosomes

m YAC:s (yeast artificial chromosomes), constructed in 1980s.
= Insert size 250-2,000 kb
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