Chapter 4

The Chromosome Theory of Inheritance

Sections to study

4.1 Chromosomes: The carriers of genes4.2 Mitosis: Cell division that preserves chromosome number

4.3 Meiosis: Cell division that halve chromosome number

4.4 Gametogenesis

4.5 Validation of the chromosome theory

4.1 Chromosomes: The carriers of genes

1667 – Anton van Leeuwenhoek

- Semen contains spermatozoa ("sperm animals")
- Hypothesized that sperm may enter egg to achieve fertilization.
- 1854-1874 confirmation of fertilization through union of eggs and sperms
 - Observed fertilization in frogs and sea urchins using microscopy.
 - The nuclei are the only elements contributed equally by sperms and eggs.

Evidence that genes reside in chromosomes

1880s – innovations in microscopy and staining techniques identified thread-like structures: chromosomes ("colored bodies").

Tracking the movement of chromosomes during cell division.

- Somatic cells undergo mitosis one type of nuclear division that results in two daughter cells containing same number and type of chromosomes as parent cells.
- Germ cells undergo meiosis one type of nuclear division that results in daughter cells containing half the number of chromosomes as the parents.

Haploid vs diploid cells

- Gamete contains one-half the number of chromosomes as the zygote.
 - Haploid cells that carry only a single chromosome set
 - Diploid cells that carry two matching chromosome sets
 - *n* the number of chromosomes in a haploid cell
 - 2n the number of chromosomes in a diploid cell
- At fertilization, haploid gametes produce diploid zygotes.

The number and shape of chromosomes vary from species to species

Organism	n	2n	
Drosophila melanogaster	4	8	
Drosophila obscura	5	10	
Drosophila virilus	6	12	
Peas	7	14	
Macaroni wheat	14	28	
Giant sequoia trees	11	22	
Goldfish	47	94	
Dogs	39	78	
Humans	23	46	

Anatomy of a chromosome

Homologous chromosomes (homologs)

- Each pair matches in size, shape, and banding pattern.
- Contain the same set of genes.
- Genes may carry different alleles.
- Nonhomologous chromosomes carry completely unrelated sets of genes.

Karyotype: The visual description of the complete set of chromosomes in one cell of an organism.

	7	37	• 1		1 5
6	7		10	5 6 11	12
9 13	1 4	8 15	16 A	2 17	18 18
88 19	S 7 20	21	€ ≷ 22	k X	B Y

Karyotype of a human male

Karyotypes can be produced by cutting micrograph images of stained chromosomes and arranging them in matched pairs of decreasing size.

Autosomes – chromosomes in matching pairs **Sex chromosomes** - unmatched chromosomes

Chromosomes carry information for determining trait

- In many species, one pair of chromosome determines an individual's sex.
- Walter Sutton studied chromosome dynamics during spermatogenesis in great lubber grasshopper.

Walter S. Sutton (1877-1916)

- Prior to meiosis, precursor cells in the testes contain 24 chromosomes: 11 matched pairs (autosomes) and 2 unmatched chromosomes X and Y (sex chromosomes).
- Sperms contain 11 chromosomes and X or Y in equal numbers.
- After fertilization
- Cells with XX were females. Cells with XY were males.

Sex chromosomes

- Provide basis for sex determination
- One sex has matching pair.
- The other sex has one of each type of chromosome.

Human X and Y chromosome

Sex determination in humans

- Children receive only an X chromosome from mother but X or Y from father.
- Male: Female ratio is 1:1.
 - Caucasian 1.06; African-American 1.025; Korea
 1.15 (1969 census data)

Role of X and Y chromosomes in human sex determination

Conclusion:

Y chromosome determines maleness.

In the absence of a Y chromosome, no **TDF** is produced

The lack of TDF allows the cortex of the embryonic gonads to develop into ovaries.

In the absence of testosterone, the embryo develops female characteristics.

The testis-determining factor (TDF) is produced by a gene on the Y

TDF induces the medulla of the embryonic gonads to develop into testes.

The testes produce testosterone, a hormone that initiates development of male sexual characteristics.

People carry abnormal number of sex chromosomes are not rare

Chromosomes	Syndrome	Frequency at birth
Sex chromosomes, females		
XO, monosomic	Turner	1/5000
XXX, trisomic	J	
XXXX, tetrasomic	}	1/700
XXXXX, pentasomic	J	
Sex chromosomes, males		
XYY, trisomic	Normal	1/10,000
XXYY, tetrasomic		
XXXY, tetrasomic	Klinefelter	> 1/500
XXXXY, pentasomic		1, 500
XXXXXY, hexasomic	J	

About 0.4% of all babies born have a detectable chromosomal abnormality that generates a detrimental phenotype.

Variation between species in how chromosomes determine an individual's sex

s, Drosophila elegans

In fruit flies, the ratio of X chromosomes to autosomes determines sex.

TABLE 4.1	Sex Determination in Fruit Flies and Humans						
Complement of Sex Chromosomes							
	XXX	ХХ	ХХҮ	хо	XY	ХҮҮ	OY
Drosophila	Dies	Normal female	Normal female	Sterile male	Normal male	Normal male	Dies
Humans	Nearly normal female	Normal female	Klinefelter male (sterile); tall, thin	Turner female (sterile); webbed neck	Normal male	Normal or nearly normal male	Dies

Humans can tolerate extra X chromosomes better than Drosophila (compare the fate of XXX individuals). Complete absence of an X chromosome is lethal to both fruit flies and humans because this chromosome carries essential genes not found on other chromosomes. Additional Y chromosomes have little effect in either species.

4.2 Mitosis: Cell division that preserves chromosome number

- Cell cycle The repeating pattern of cell growth and division.
 - Alternates between interphase and mitosis

Interphase: Period of cell cycle between divisions. Cells grow and replicate chromosomes

- G1 gap phase birth of cell to onset of chromosome replication/cell growth
- **S** synthesis phase duplication of DNA
- G2 gap phase end of chromosome replication to onset of mitosis

Mitosis: The division of the nucleus.

- Prophase
- Metaphase
- Anaphase
- Telophase

Cytokinesis: The division of the cytoplasm.

Cell cycle duration in various cell types G1 S G2 M 24 hr **Cultured fibroblast G2 M** S **G1** S. cerevisiae 2 hr G1S **G2** ^M 2.5 hr S. pombe **G2** Physarum polycephalum _____ **12 hr** (slime mold) S M **Fertilized** *Xenopus* egg **0.5** hr

Interphase

Outside of nucleus

- Formation of microtubules radiating out into cytoplasm crucial for interphase processes
 - Centrosome organizing center for microtubules located near nuclear envelope
 - Centrioles pair of small darkly stained bodies at center of centrosome in animals (not found in plants)

Within nucleus

■ G1, S, and G2 phase –chromosome replication

Chromosome replication during S phase

(b) Chromosomes replicate during S phase

Synthesis of chromosomes

Note the formation of sister chromatids

Mitosis – Sister chromatids separate

Prophase – chromosomes condense

- Inside nucleus
 - **Chromosomes condense into structures suitable for replication.**
 - Nucleoli begin to break down and disappear.
- Outside nucleus
 - Centrosomes which replicated during interphase move apart and migrate to opposite ends of the nucleus.
 - Interphase microtubules disappear and are replaced by microtubules that rapidly grow from and contract back to centrosomal organizing centers.

Prometaphase

- Nuclear envelope breaks down
- Microtubules invade nucleus
- Chromosomes attach to microtubules through kinetochore
- Mitotic spindle composed of three types of microtubules
 - Kinetochore microtubules centrosome to kinetochore
 - Polar microtubules centrosome to middle of cell
 - Astral microtubules centrosome to cell's periphery

Metaphase – middle stage Chromosomes move towards imaginary equator called metaphase plate

Anaphase

Separation of sister chromatids allows each chromatid to be pulled towards spindle pole connected to by kinetochore microtubule.

Telophase

- Spindle fibers disperse
- Nuclear envelope forms around group of chromosomes at each pole
- One or more nucleoli reappear
- Chromosomes decondense
- Mitosis complete

Cytokinesis - cytoplasm divides Starts during anaphase and ends in telophase

Checkpoints ensure correct chromosome segregation

Fig. 4.11

4.3 Meiosis: Cell division that halve chromosome number

- Somatic cells: Cells that divide mitotically and make up vast majority of organism's tissues.
- Germ cells: Specialized cells for the production of gametes.
 - Arise during embryonic development in animals and floral development in plants.
 - Undergo meiosis to produce haploid gametes.
 - Gametes unite with gamete from opposite sex to produce diploid offspring.

Meiosis

Chromosomes replicate once. Nuclei divide twice.

Meiosis – Prophase I

Meiosis I: A reduction division

- 1. Chromosomes thicken and become visible but the chromatids remain invisible.
- 2. Centrosomes begin to move towards opposite poles.

Prophase I: Zygotene

- 1. Homologous chromosomes enter
 - synapsis.
- 2. The synaptonemal complex forms.

Prophase I: Pachytene

- 1. Synapsis is complete.
- 2. Crossing-over, genetic exchange between nonsister chromatids of a homologous pair, occurs.

Meiosis – Prophase I continued

Prophase I: Diplotene

- 1. Synaptonemal complex dissolves.
- 2. A tetrad of four chromatids is visible.
- Crossover points appear as chiasmata, which hold nonsister chromatids together.
- Meiotic arrest occurs at this time in many species.

Prophase I: Diakinesis

- 1. Chromatids thicken and shorten.
- At the end of prophase I, the nuclear membrane (not shown earlier) breaks down and the spindle begins to form.

Crossing over during prophase produces recombined chromosomes

- (a) Leptotene: Threadlike chromosomes begin to condense and thicken, becoming visible as discrete structures. Although the chromosomes have duplicated, the sister chromatids of each chromosome are not yet visible in the microscope.
- (b) Zygotene: Chromosomes are clearly visible and begin active pairing with homologous chromosomes along the synaptonemal complex to form a bivalent, or tetrad.
- (c) Pachytene: Full synapsis of homologues. Recombination nodules appear along the synaptonemal complex.

Fig. 4.14 a-c

- (d) Diplotene: Bivalent appears to pull apart slightly but remains connected at crossover sites, called chiasmata.
- (e) Diakinesis: Further condensation of chromatids. Nonsister chromatids that have exchanged parts by crossing-over remain closely associated at chiasmata.

How crossing over produces recombined gametes?

Meiosis I – Metaphase and Anaphase

Metaphase I

- 1. Tetrads line up along the metaphase plate.
- Each chromosome of a homologous pair attaches to fibers from opposite poles.
- Sister chromatids attach to fibers from the same pole.

Anaphase I

- 1. The centromere does not divide.
- The chiasmata migrate off chromatid ends.
- Homologous chromosomes move to opposite poles.

Meiosis – Telophase I and Interkinesis

- **Telophase II**
- 1. Chromosomes begin to uncoil.
- 2. Nuclear envelopes and nucleoli (not shown) re-form.

Cytokinesis

1. The cytoplasm divides, forming four new haploid cells.

Meiosis – Prophase II and Metaphase II

Meiosis II: An equational division

Prophase II

- 1. Chromosomes condense.
- 2. Centrioles move toward the poles.
- The nuclear envelope breaks down at the end of prophase II (not shown).

Metaphase II

- 1. Chromosomes align at the metaphase plate.
- Sister chromatids attach to spindle fibers from opposite poles.

Meiosis – Anaphase II and Telophase II

Anaphase II

 Centromeres divide and sister chromatids move to opposite poles.

Telophase II

- 1. Chromosomes begin to uncoil.
- Nuclear envelopes and nucleoli (not shown) re-form.

Meiosis - Cytokinesis

Meiosis contributes to genetic diversity in two ways

- Independent assortment of nonhomologous chromosomes creates different combinations of alleles among chromosomes.
- Crossing-over between homologous chromosomes creates different combinations of alleles within each chromosome.

Fig. 4.16

4.4 Gametogenesis

- Oogenesis egg formation in human females.
 - Diploid germ cells called oogonia multiply by mitosis to produce primary oocytes.
 - Primary oocytes undergo meiosis I to produce one secondary oocyte and one small polar body (which arrests development).
 - Secondary oocyte undergoes meiosis II to produce one ovum and one small polar body.

Spermatogenesis – sperm formation in human males.

- Begins in male testes in germ cells called spermatogonia.
- Mitosis produces diploid primary spermatocytes.
- Meiosis I produces two secondary spermatocytes per cell.
- Meiosis II produces four equivalent spermatids.
- Spermatids mature into functional sperm.

Fig. 4.18

4.5 Validation of the chromosome theory

Also called the Boveri-Sutton chromosome theory.

- Theodor Boveri described the segregation of chromosomes in sea urchin in 1902-1904.
- Walter Sutton reported the behavior of chromosome segregation in grasshopper in 1902-1903.

Theodor Boveri (1862-1915)

Walter S. Sutton (1877-1916) "Chromosome movements parallel the behavior of Mendel's genes. Chromosomes are likely to carry the genetic material."

- Confirmed in the following 15 years through studies on the fruit fly *Drosophila melanogaster*.
- The theory transformed the concept of a gene from an abstract particle to a physical reality.

The chromosome theory correlates Mendel's laws with chromosome behavior during meiosis

Chromosome Behavior

- Each cell contains two copies of each chromosome
- Chromosome complements appear unchanged during transmission from parent to offspring.
- Homologous chromosomes pair and then separate to different gametes.
- Maternal and paternal copies of chromosome pairs separate without regard to the assortment of other homologous chromosome pairs.
- At fertilization an egg's set of chromosomes unite with randomly encountered sperm's chromosomes.
- In all cells derived from a fertilized egg, one half of chromosomes are of materna

Behavior of genes

- Each cell contains two copies of each gene.
- Genes appear unchanged during transmission from parent to offspring.
- Alternative alleles segregate to different gametes.
- Alternative alleles of unrelated genes assort independently.
- Alleles obtained from one parent unite at random with those from another parent.
- In all cells derived from a fertilized gamete, one half of genes are of maternal origin, and half are paternal.

gous chromosome. The pairing between the two homologous chromosomes during prophase through metaphase of mejosis I 4-55

VV IT

Specific traits are transmitted with specific chromosomes

A test of the chromosome theory

- If genes are on specific chromosomes, traits determined by the gene should be transmitted with the chromosome.
- Thomas H. Morgan's experiments demonstrate the transmission of traits with chromosomes.

Human chromosomes

In May, 1910, Thomas H. Morgan discovered a white-eyed male fruit fly *Drosophila melanogaster*.

Crisscross inheritance of the white gene demonstrates X-linkage

w⁺: red eyes, wild-typew: white eyesX: X chromosomeY: Y chromosome

w⁺: red eyes, wild-typew: white eyesX: X chromosomeY: Y chromosome

Conclusion: white eye mutation is on the X chromosome.

T. H. Morgan's experiments on sex-linked inheritance of a gene demonstrate the transmission of traits with chromosomes.

Human male karyotype

Human X chromosome

X-linked recessive trait in humans

Hemophilia:

- Bleeders disease, the blood failed to clot properly when there is a wound.
 - Hemophilia A (factor VIII deficiency)
 - Hemophilia B (factor IX deficiency), 1 in 25,000 males (3,300 people in US), less common than hemophilia A.

Hemophilia in the British royal family

Red-green colorblindness:

- 8% male, 0.44% female, among Western Europeans in Europe and North America.
- In 1911, Edmund B. Wilson believed the gene is on X chromosome.

X-linked dominant trait in humans

TABLE 4.5Pedigree Patterns SuggestingSex-Linked Inheritance

X-Linked Recessive Trait

- The trait appears in more males than females since a female must receive two copies of the rare defective allele to display the phenotype, whereas a hemizygous male with only one copy will show it.
- 2. The mutation will never pass from father to son because sons receive only a Y chromosome from their father.
- An affected male passes the X-linked mutation to all his daughters, who are thus unaffected carriers. One-half of the sons of these carrier females will inherit the defective allele and thus the trait.
- 4. The trait often skips a generation as the mutation passes from grandfather through a carrier daughter to grandson.
- The trait can appear in successive generations when a sister of an affected male is a carrier. If she is, one-half her sons will be affected.
- 6. With the rare affected female, all her sons will be affected and all her daughters will be carriers.

X-Linked Dominant Trait

- 1. More females than males show the aberrant trait.
- 2. The trait is seen in every generation because it is dominant.
- All the daughters but none of the sons of an affected male will be affected. This criterion is the most useful for distinguishing an X-linked dominant trait from an autosomal dominant trait.
- One-half the sons and one-half the daughters of an affected female will be affected.

Y-Linked Inheritance

- 1. The trait is seen only in males.
- All male descendants of an affected man will exhibit the trait.
- Not only do females not exhibit the trait, they also cannot transmit it.